Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 271: 125641, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218055

RESUMEN

In this study, we explore the potential of 1D ZnO-Au nanocomposites as innovative label-free photoluminescence (PL) immunosensors for rapidly detecting Listeria monocytogenes, a significant concern in food safety. We synthesized ZnO nanorods (ZnO_NR) and nanowires (ZnO_NW), followed by Au deposition to create ZnO_NR/Au and ZnO_NW/Au nanocomposites. Our analyses, including SEM, TEM, Raman spectroscopy, and photoluminescence (PL), revealed distinct structural and optical properties of these nanocomposites, especially noting the superior crystallinity and stability of ZnO_NR/Au. The biosensor performance was evaluated through PL sensitivity to Anti-Listeria antibodies, demonstrating that ZnO_NR with higher concentration of Au nanoparticles exhibited higher sensitivity and a lower limit of detection (LOD), attributed to a greater density of Listeria binding sites. The developed biosensor demonstrated a remarkable limit of detection (LOD) of 8.3 × 102 CFU/mL, rivaling or surpassing conventional culture-based methods and some molecular techniques. This research underscores the critical role of Au deposition duration in optimizing biosensor performance and presents a promising advancement in rapid and sensitive Listeria detection, with significant implications for enhancing food safety protocols.


Asunto(s)
Técnicas Biosensibles , Listeria monocytogenes , Nanopartículas del Metal , Nanocompuestos , Óxido de Zinc , Óxido de Zinc/química , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Inmunoensayo/métodos , Nanocompuestos/química
2.
Nanomaterials (Basel) ; 14(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38251102

RESUMEN

The emergence of antibiotic-resistant bacteria, particularly the most hazardous pathogens, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE)-pathogens pose a significant threat to global health. Current antimicrobial therapies, including those targeting biofilms, have shown limited effectiveness against these superbugs. Nanoparticles, specifically silver nanoparticles (AgNPs), have emerged as a promising alternative for combating bacterial infections. In this study, two types of AgNPs with different physic-chemical properties were evaluated for their antimicrobial and antibiofilm activities against clinical ESKAPE strains. Two types of silver nanoparticles were assessed: spherical silver nanoparticles (AgNPs-1) and cubic-shaped silver nanoparticles (AgNPs-2). AgNPs-2, characterized by a cubic shape and higher surface-area-to-volume ratio, exhibited superior antimicrobial activity compared to spherical AgNPs-1. Both types of AgNPs demonstrated the ability to inhibit biofilm formation and disrupt established biofilms, leading to membrane damage and reduced viability of the bacteria. These findings highlight the potential of AgNPs as effective antibacterial agents against ESKAPE pathogens, emphasizing the importance of nanoparticle characteristics in determining their antimicrobial properties. Further research is warranted to explore the underlying mechanisms and optimize nanoparticle-based therapies for the management of infections caused by antibiotic-resistant bacteria.

3.
Nanomaterials (Basel) ; 13(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764630

RESUMEN

Cardiovascular diseases (CVDs) remain a leading cause of death in the European population, primarily attributed to atherosclerosis and subsequent complications. Although statin drugs effectively prevent atherosclerosis, they fail to reduce plaque size and vascular stenosis. Bare metal stents (BMS) have shown promise in acute coronary disease treatment but are associated with restenosis in the stent. Drug-eluting stents (DES) have improved restenosis rates but present long-term complications. To overcome these limitations, nanomaterial-based modifications of the stent surfaces have been explored. This study focuses on the incorporation of detonation nanodiamonds (NDs) into a plasma electrolytic oxidation (PEO) coating on nitinol stents to enhance their performance. The functionalized ND showed a high surface-to-volume ratio and was incorporated into the oxide layer to mimic high-density lipoproteins (HDL) for reverse cholesterol transport (RCT). We provide substantial characterization of DND, including stability in two media (acetone and water), Fourier transmission infrared spectroscopy, and nanoparticle tracking analysis. The characterization of the modified ND revealed successful functionalization and adequate suspension stability. Scanning electron microscopy with EDX demonstrated successful incorporation of DND into the ceramic layer, but the formation of a porous surface is possible only in the high-voltage PEO. The biological assessment demonstrated the biocompatibility of the decorated nitinol surface with enhanced cell adhesion and proliferation. This study presents a novel approach to improving the performance of nitinol stents using ND-based surface modifications, providing a promising avenue for cardiovascular disease.

4.
J Funct Biomater ; 14(8)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37623659

RESUMEN

The present study demonstrates a strategy for preparing porous composite fibrous materials with superior biocompatibility and antibacterial performance. The findings reveal that the incorporation of PEG into the spinning solutions significantly influences the fiber diameters, morphology, and porous area fraction. The addition of a hydrophilic homopolymer, PEG, into the Ch/PLA spinning solution enhances the hydrophilicity of the resulting materials. The hybrid fibrous materials, comprising Ch modified with PLA and PEG as a co-solvent, along with post-treatment to improve water stability, exhibit a slower rate of degradation (stable, moderate weight loss over 16 weeks) and reduced hydrophobicity (lower contact angle, reaching 21.95 ± 2.17°), rendering them promising for biomedical applications. The antibacterial activity of the membranes is evaluated against Staphylococcus aureus and Escherichia coli, with PEG-containing samples showing a twofold increase in bacterial reduction rate. In vitro cell culture studies demonstrated that PEG-containing materials promote uniform cell attachment, comparable to PEG-free nanofibers. The comprehensive evaluation of these novel materials, which exhibit improved physical, chemical, and biological properties, highlights their potential for biomedical applications in tissue engineering and regenerative medicine.

5.
Nanomaterials (Basel) ; 13(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37368306

RESUMEN

Maxillary sinus augmentation is a commonly used procedure for the placement of dental implants. However, the use of natural and synthetic materials in this procedure has resulted in postoperative complications ranging from 12% to 38%. To address this issue, we developed a novel calcium deficient HA/ß-TCP bone grafting nanomaterial using a two-step synthesis method with appropriate structural and chemical parameters for sinus lifting applications. We demonstrated that our nanomaterial exhibits high biocompatibility, enhances cell proliferation, and stimulates collagen expression. Furthermore, the degradation of ß-TCP in our nanomaterial promotes blood clot formation, which supports cell aggregation and new bone growth. In a clinical trial involving eight cases, we observed the formation of compact bone tissue 8 months after the operation, allowing for the successful installation of dental implants without any early postoperative complications. Our results suggest that our novel bone grafting nanomaterial has the potential to improve the success rate of maxillary sinus augmentation procedures.

6.
Polymers (Basel) ; 15(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37050211

RESUMEN

Detecting bacteria-Listeria monocytogenes-is an essential healthcare and food industry issue. The objective of the current study was to apply platinum (Pt) and screen-printed carbon (SPCE) electrodes modified by molecularly imprinted polymer (MIP) in the design of an electrochemical sensor for the detection of Listeria monocytogenes. A sequence of potential pulses was used to perform the electrochemical deposition of the non-imprinted polypyrrole (NIP-Ppy) layer and Listeria monocytogenes-imprinted polypyrrole (MIP-Ppy) layer over SPCE and Pt electrodes. The bacteria were removed by incubating Ppy-modified electrodes in different extraction solutions (sulphuric acid, acetic acid, L-lysine, and trypsin) to determine the most efficient solution for extraction and to obtain a more sensitive and repeatable design of the sensor. The performance of MIP-Ppy- and NIP-Ppy-modified electrodes was evaluated by pulsed amperometric detection (PAD). According to the results of this research, it can be assumed that the most effective MIP-Ppy/SPCE sensor can be designed by removing bacteria with the proteolytic enzyme trypsin. The LOD and LOQ of the MIP-Ppy/SPCE were 70 CFU/mL and 210 CFU/mL, respectively, with a linear range from 300 to 6700 CFU/mL.

7.
ACS Appl Mater Interfaces ; 15(16): 19863-19876, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37041124

RESUMEN

Dental implants have become a routine, affordable, and highly reliable technology to replace tooth loss. In this regard, titanium and its alloys are the metals of choice for the manufacture of dental implants because they are chemically inert and biocompatible. However, for special cohorts of patients, there is still a need for improvements, specifically to increase the ability of implants to integrate into the bone and gum tissues and to prevent bacterial infections that can subsequently lead to peri-implantitis and implant failures. Therefore, titanium implants require sophisticated approaches to improve their postoperative healing and long-term stability. Such treatments range from sandblasting to calcium phosphate coating, fluoride application, ultraviolet irradiation, and anodization to increase the bioactivity of the surface. Plasma electrolytic oxidation (PEO) has gained popularity as a method for modifying metal surfaces and delivering the desired mechanical and chemical properties. The outcome of PEO treatment depends on the electrochemical parameters and composition of the bath electrolyte. In this study, we investigated how complexing agents affect the PEO surfaces and found that nitrilotriacetic acid (NTA) can be used to develop efficient PEO protocols. The PEO surfaces generated with NTA in combination with sources of calcium and phosphorus were shown to increase the corrosion resistance of the titanium substrate. They also support cell proliferation and reduce bacterial colonization and, hence, lead to a reduction in failed implants and repeated surgeries. Moreover, NTA is an ecologically favorable chelating agent. These features are necessary for the biomedical industry to be able to contribute to the sustainability of the public healthcare system. Therefore, NTA is proposed to be used as a component of the PEO bath electrolyte to obtain bioactive surface layers with properties desired for next-generation dental implants.


Asunto(s)
Implantes Dentales , Titanio , Humanos , Titanio/química , Ácido Nitrilotriacético , Propiedades de Superficie , Oxidación-Reducción , Metales , Aleaciones , Electrólitos , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-36892008

RESUMEN

New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.

9.
Molecules ; 27(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35630820

RESUMEN

Chitosan, a natural biopolymer, is an ideal candidate to prepare biomaterials capable of preventing microbial infections due to its antibacterial properties. Electrospinning is a versatile method ideally suited to process biopolymers with minimal impact on their physicochemical properties. However, fabrication parameters and post-processing routine can affect biological activity and, therefore, must be well adjusted. In this study, nanofibrous membranes were prepared using trifluoroacetic acid and dichloromethane and evaluated for physiochemical and antimicrobial properties. The use of such biomaterials as potential antibacterial agents was extensively studied in vitro using Staphylococcus aureus and Escherichia coli as test organisms. The antibacterial assay showed inhibition of bacterial growth and eradication of the planktonic cells of both E. coli and S. aureus in the liquid medium for up to 6 hrs. The quantitative assay showed a significant reduction in bacteria cell viability by nanofibers depending on the method of fabrication. The antibacterial properties of these biomaterials can be attributed to the structural modifications provided by co-solvent formulation and application of post-treatment procedure. Consequently, the proposed antimicrobial surface modification method is a promising technique to prepare biomaterials designed to induce antimicrobial resistance via antiadhesive capability and the biocide-releasing mechanism.


Asunto(s)
Antiinfecciosos , Quitosano , Nanofibras , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Biopelículas , Quitosano/química , Quitosano/farmacología , Escherichia coli , Nanofibras/química , Staphylococcus aureus
10.
Cardiol Res Pract ; 2022: 2067632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35449607

RESUMEN

Coronary artery disease (CAD) is one of the leading causes of death in Europe. It is known that atherosclerosis is the primary risk factor of CAD development. MMP-9 is involved in all stages of atherosclerosis and thus may contribute to CAD emergence. To investigate the influence of MMP-9 on the (CAD) development 25 patients with intact coronary arteries (CA), 40 patients with acute coronary syndrome (ACS), and 63 patients with chronic coronary syndrome (CCS) were enrolled in the study. Real-time PCR was carried out for genotyping on the rs17567-polymorphic locus, and ELISA study was performed to measure the MMP-9 plasma concentration. It was found the lower risk of MI occurrence for AG-carriers (P a =0.023; ORa = 0.299, 95% CI = 0.106-0.848) in Ukrainian population.

11.
Biomedicines ; 9(9)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34572402

RESUMEN

Surgical site infection (SSI) substantially contributes each year to patients' morbidity and mortality, accounting for about 15% of all nosocomial infections. SSI drastically increases the rehab stint and expenses while jeopardizing health outcomes. Besides prevention, the treatment regime relies on an adequate antibiotic therapy. On the other hand, resistant bacterial strains have currently reached up to 34.3% of the total infections, and this percentage grows annually, reducing the efficacy of the common treatment schemes. Thus, new antibacterial strategies are urgently demanded. Here, we demonstrated in rats the effectiveness of non-persistent silver nano-architectures (AgNAs) in infected wound healing together with their synergistic action in combination with chlorhexidine. Besides the in vivo efficacy evaluation, we performed analysis of the bacteriological profile of purulent wound, histological evaluations, and macrophages polarization quantifications to further validate our findings and elucidate the possible mechanisms of AgNAs action on wound healing. These findings open the way for the composition of robust multifunctional nanoplatforms for the translation of safe and efficient topical treatments of SSI.

12.
Biomedicines ; 9(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064090

RESUMEN

The application of chitosan (Ch) as a promising biopolymer with hemostatic properties and high biocompatibility is limited due to its prolonged degradation time, which, in turn, slows the repair process. In the present research, we aimed to develop new technologies to reduce the biodegradation time of Ch-based materials for hemostatic application. This study was undertaken to assess the biocompatibility and hemostatic and tissue-regeneration performance of Ch-PEO-copolymer prepared by electrospinning technique. Chitosan electrospinning membranes (ChEsM) were made from Ch and polyethylene oxide (PEO) powders for rich high-porous material with sufficient hemostatic parameters. The structure, porosity, density, antibacterial properties, in vitro degradation and biocompatibility of ChEsM were evaluated and compared to the conventional Ch sponge (ChSp). In addition, the hemostatic and bioactive performance of both materials were examined in vivo, using the liver-bleeding model in rats. A penetrating punch biopsy of the left liver lobe was performed to simulate bleeding from a non-compressible irregular wound. Appropriately shaped ChSp or ChEsM were applied to tissue lesions. Electrospinning allows us to produce high-porous membranes with relevant ChSp degradation and swelling properties. Both materials demonstrated high biocompatibility and hemostatic effectiveness in vitro. However, the antibacterial properties of ChEsM were not as good when compared to the ChSp. In vivo studies confirmed superior ChEsM biocompatibility and sufficient hemostatic performance, with tight interplay with host cells and tissues. The in vivo model showed a higher biodegradation rate of ChEsM and advanced liver repair.

13.
Molecules ; 26(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917454

RESUMEN

The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.


Asunto(s)
Electrólisis , Magnesio/farmacología , Gases em Plasma/química , Silicatos/química , Antibacterianos/farmacología , Líquidos Corporales/química , Calcio/análisis , Línea Celular Tumoral , Supervivencia Celular , Materiales Biocompatibles Revestidos/farmacología , Electrodos , Humanos , Luminiscencia , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Fósforo/análisis , Soluciones , Espectrometría por Rayos X , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
14.
Mater Sci Eng C Mater Biol Appl ; 121: 111870, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579496

RESUMEN

Triply periodic minimal surfaces (TPMS) are known for their advanced mechanical properties and are wrinkle-free with a smooth local topology. These surfaces provide suitable conditions for cell attachment and proliferation. In this study, the in vitro osteoinductive and antibacterial properties of scaffolds with different minimal pore diameters and architectures were investigated. For the first time, scaffolds with TPMS architecture were treated electrochemically by plasma electrolytic oxidation (PEO) with and without silver nanoparticles (AgNPs) to enhance the surface bioactivity. It was found that the scaffold architecture had a greater impact on the osteoblast cell activity than the pore size. Through control of the architecture type, the collagen production by osteoblast cells increased by 18.9% and by 43.0% in the case of additional surface PEO bioactivation. The manufactured scaffolds demonstrated an extremely low quasi-elastic modulus (comparable with trabecular and cortical bone), which was 5-10 times lower than that of bulk titanium (6.4-11.4 GPa vs 100-105 GPa). The AgNPs provided antibacterial properties against both gram-positive and gram-negative bacteria and had no significant impact on the osteoblast cell growth. Complex experimental results show the in vitro effectiveness of the PEO-modified TPMS architecture, which could positively impact the clinical applications of porous bioactive implants.


Asunto(s)
Nanopartículas del Metal , Titanio , Aleaciones , Antibacterianos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Porosidad , Plata/farmacología , Andamios del Tejido , Titanio/farmacología
15.
Mater Sci Eng C Mater Biol Appl ; 119: 111607, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321651

RESUMEN

Plasma Electrolytic Oxidation (PEO) is as a promising technique to modify metal surfaces by application of oxide ceramic coatings with appropriate physical, chemical and biological characteristics. Therefore, objective of this research was to find the simplest settings, yet able to produce relevant bioactive implant surfaces layers on Ti implants by means of PEO. We show that an electrolyte containing potassium dihydrogen phosphate as a source of P and either calcium hydroxide or calcium formate as a source of Ca in combination with a chelating agent, ethylenediamine tetraacetic acid (EDTA), is suitable for PEO to deliver coatings with desired properties. We determined surface morphology, roughness, wettability, chemical and phase composition of titanium after the PEO process. To investigate biocompatibility and bacterial properties of the PEO oxide coatings we used microbial and cell culture tests. The electrolyte based on Ca(OH)2 and EDTA promotes active crystallization of apatites after PEO processing of the Ti implants. The PEO layers can increase electrochemical corrosion resistance. The PEO can be potentially used for development of bioactive surfaces with increased support of eukaryotic cells while inhibiting attachment and growth of bacteria without use of antibacterial agents.


Asunto(s)
Implantes Dentales , Titanio , Calcio , Cerámica/farmacología , Materiales Biocompatibles Revestidos/farmacología , Oxidación-Reducción , Fósforo , Propiedades de Superficie , Titanio/farmacología
16.
Nanomaterials (Basel) ; 10(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266240

RESUMEN

In a present paper, we demonstrate novel approach to form ceramic coatings with incorporated ZnO nanoparticles (NPs) on low modulus TiZrNb alloy with enhanced biocompatibility and antibacterial parameters. Plasma Electrolytic Oxidation (PEO) was used to integrate ZnO nanoparticles (average size 12-27 nm), mixed with Ca(H2PO2)2 aqueous solution into low modulus TiZrNb alloy surface. The TiZrNb alloys with integrated ZnO NPs successfully showed higher surface porosity and contact angle. XPS investigations showed presence of Ca ions and absence of phosphate ions in the PEO modified layer, what explains higher values of contact angle. Cell culture experiment (U2OS type) confirmed that the surface of as formed oxide-ZnO NPs demonstrated hydrophobic properties, what can affect primary cell attachment. Further investigations showed that Ca ions in the PEO coating stimulated proliferative activity of attached cells, resulting in competitive adhesion between cells and bacteria in clinical situation. Thus, high contact angle and integrated ZnO NPs prevent bacterial adhesion and considerably enhance the antibacterial property of TiZrNb alloys. A new anodic oxide coating with ZnO NPs could be successfully used for modification of low modulus alloys to decrease post-implantation complications.

17.
Materials (Basel) ; 13(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008012

RESUMEN

Despite the high biocompatibility and clinical effectiveness of Ti-based implants, surface functionalization (with complex osteointegrative/antibacterial strategies) is still required. To enhance the dental implant surface and to provide additional osteoinductive and antibacterial properties, plasma electrolytic oxidation of a pure Ti was performed using a nitrilotriacetic acid (NTA)-based Ag nanoparticles (AgNP)-loaded calcium-phosphate solution. Chemical and structural properties of the surface-modified titanium were assessed using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) and contact angle measurement. A bacterial adhesion test and cell culture biocompatibility with collagen production were performed to evaluate biological effectiveness of the Ti after the plasma electrolytic process. The NTA-based calcium-phosphate solution with Ag nanoparticles (AgNPs) can provide formation of a thick, porous plasma electrolytic oxidation (PEO) layer enriched in silver oxide. Voltage elevation leads to increased porosity and a hydrophilic nature of the newly formed ceramic coating. The silver-enriched PEO layer exhibits an effective antibacterial effect with high biocompatibility and increased collagen production that could be an effective complex strategy for dental and orthopedic implant development.

18.
Materials (Basel) ; 13(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899716

RESUMEN

High strength, excellent corrosion resistance, high biocompatibility, osseointegration ability, and low bacteria adhesion are critical properties of metal implants. Additionally, the implant surface plays a critical role as the cell and bacteria host, and the development of a simultaneously antibacterial and biocompatible implant is still a crucial challenge. Copper nanoparticles (CuNPs) could be a promising alternative to silver in antibacterial surface engineering due to low cell toxicity. In our study, we assessed the biocompatibility and antibacterial properties of a PEO (plasma electrolytic oxidation) coating incorporated with CuNPs (Cu nanoparticles). The structural and chemical parameters of the CuNP and PEO coating were studied with TEM/SEM (Transmission Electron Microscopy/Scanning Electron Microscopy), EDX (Energy-Dispersive X-ray Dpectroscopy), and XRD (X-ray Diffraction) methods. Cell toxicity and bacteria adhesion tests were used to prove the surface safety and antibacterial properties. We can conclude that PEO on a ZrNb alloy in Ca-P solution with CuNPs formed a stable ceramic layer incorporated with Cu nanoparticles. The new surface provided better osteoblast adhesion in all time-points compared with the nontreated metal and showed medium grade antibacterial activities. PEO at 450 V provided better antibacterial properties that are recommended for further investigation.

19.
Materials (Basel) ; 12(22)2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766225

RESUMEN

Plasma electrolytic oxidation (PEO) can provide an ideal surface for osteogenic cell attachment and proliferation with further successful osteointegration. However, the same surface is attractive for bacteria due to similar mechanisms of adhesion in prokaryotic and eukaryotic cells. This issue requires the application of additional surface treatments for effective prevention of postoperative infectious complications. In the present work, ZrNb alloy was treated in a Ca-P solution with Ag nanoparticles (AgNPs) for the development of a new oxide layer that hosted osteogenic cells and prevented bacterial adhesion. For the PEO, 0.5 M Ca(H2PO2)2 solution with 264 mg L-1 of round-shaped AgNPs was used. Scanning electron microscopy with energy-dispersive x-ray and x-ray photoelectron spectroscopy were used for morphology and chemical analysis of the obtained samples; the SBF immersion test, bacteria adhesion test, and osteoblast cell culture were used for biological investigation. PEO in a Ca-P bath with AgNPs provides the formation of a mesoporous oxide layer that supports osteoblast cell adhesion and proliferation. Additionally, the obtained surface with incorporated Ag prevents bacterial adhesion in the first 6 h after immersion in a pathogen suspension, which can be an effective approach to prevent infectious complications after implantation.

20.
Molecules ; 24(14)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31330957

RESUMEN

Massive blood loss is responsible for numerous causes of death. Hemorrhage may occur on the battlefield, at home or during surgery. Commercially available biomaterials may be insufficient to deal with excessive bleeding. Therefore novel, highly efficient hemostatic agents must be developed. The aim of the following research was to obtain a new type of biocompatible chitosan-based hemostatic agents with increased hemostatic properties. The biomaterials were obtained in a quick and efficient manner under microwave radiation using l-aspartic and l-glutamic acid as crosslinking agents with no use of acetic acid. Ready products were investigated over their chemical structure by FT-IR method which confirmed a crosslinking process through the formation of amide bonds. Their high porosity above 90% and low density (below 0.08 g/cm3) were confirmed. The aerogels were also studied over their water vapor permeability and antioxidant activity. Prepared biomaterials were biodegradable in the presence of human lysozyme. All of the samples had excellent hemostatic properties in contact with human blood due to the platelet activation confirmed by blood clotting tests. The SEM microphotographs showed the adherence of blood cells to the biomaterials' surface. Moreover, they were biocompatible with human dermal fibroblasts (HDFs). The biomaterials also had superior antibacterial properties against both Staphylococcus aureus and Escherichia coli. The obtained results showed that proposed chitosan-based hemostatic agents have great potential as a hemostatic product and may be applied under sterile, as well as contaminated conditions, by both medicals and individuals.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Quitosano/química , Hemostáticos/química , Hemostáticos/farmacología , Antibacterianos/síntesis química , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Coagulación Sanguínea/efectos de los fármacos , Técnicas de Química Sintética , Hemostáticos/síntesis química , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Porosidad , Análisis Espectral , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...